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Summary. Protocol synthesis is used to derive a pro-
tocol specification, that is, the specification of a set of
application components running in a distributed system
of networked computers, from a specification of services
(called the service specification) to be provided by the
distributed application to its users. Protocol synthesis
reduces design costs and errors by specifying the mes-
sage exchanges between the application components, as
defined by the protocol specification. In general, main-
taining such a distributed application involves applying
frequent minor modifications to the service specifica-
tion due to changes in the user requirements. Deriving
the protocol specification after each modification using
the existing synthesis methods is considered expensive
and time consuming. Moreover, we cannot identify what
changes we should make to the protocol specification in
correspondence to the changes in the service specifica-
tion. In this paper, we present a new synthesis method
to re-synthesize only those parts of the protocol spec-
ification that must be modified in order to satisfy the
changes in the service specification. The method consists
of a set of simple rules that are applied to the protocol
specification written in an extended Petri net model. An
application example is given along with some experimen-
tal results.
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1 Introduction

Synthesis methods have been used (for surveys see [7,
8]) to derive an implementation level’s specification of
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a distributed system (hereafter called protocol specifi-
cation) automatically from a given specification of ser-
vices to be provided by the distributed system to its
users (called service specification). The service specifica-
tion is written as a program of a centralized system, and
does not contain any message exchange between different
physical locations. However, the implementation level’s
specification of the cooperating programs, called proto-
col entities (PE’s), includes the message exchanges be-
tween these entities. Therefore, protocol synthesis meth-
ods have been used to specify and derive such complex
message exchanges automatically in order to reduce the
design costs and errors that may occur when manual
methods are used.

A number of protocol synthesis strategies have been
described in the literature. The first strategy aims at
implementing complex control-flows using different com-
putational models such as CCS based models [5,6], LO-
TOS [10,11], Petri nets [16,17,20] and FSM/EFSM [12,
14]. The second strategy, [21–23,25–27], aims at satis-
fying the timing constraints specified by a given service
specification in the derived protocol specification. This
strategy deals with real-time distributed systems. The
last strategy, [9,13,18,19,24,28,29,31], deals with the
management of distributed resources such as files and
databases. The objective is to determine how the values
of these distributed resources are updated or exchanged
among PE’s for a given resource allocation.

Some methods in the last strategy, especially in our
previous research work [29], consider an efficient imple-
mentation of a given service specification by deriving the
corresponding protocol specification with minimum com-
munication costs and optimal allocation of resources.
This work considers an optimal resource allocation to
reduce the costs of message exchanges when we derive
protocol specifications. As an example, we considered a
software development process using a Computer Sup-
ported Cooperative Work (CSCW) environment. This
process is carried out cooperatively by multiple engineers
(developers, designers, managers and others). Each engi-
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neer has his/her own workstation (PE) and participates
in the development process using specific distributed re-
sources (e.g. drafts, source codes, object codes, multi-
media video and audio files, and others) which may be
placed on different computers. Considering the need for
managing such a process in the distributed environment,
we describe the whole software development process (ser-
vice specification) and derive the set of all the engineers’
sub-processes (protocol specification). We also determine
an optimal allocation of resources that would minimize
the communication costs (such as file transfer costs).

In realistic applications, maintaining such a system
involves modifying its specification as a result of changes
of the user requirements. Moreover, developers usually
implement incrementally the given specification. Synthe-
sizing the whole system again after each minor modifica-
tion is considered expensive and time consuming, espe-
cially for large-scale distributed systems with large num-
ber of users distributed over multiple sites.

In this paper, we propose a new technique for sys-
tem maintenance called protocol re-synthesis. For a given
service specification S, its corresponding protocol spec-
ification P and a modified service specification S′, our
re-synthesis algorithm produces the changes in the pro-
tocol specification ∆P corresponding to the changes ∆S
(= S′ − S) in the service specification, and derives a
modified protocol specification P ′ (= P + ∆P ) corre-
sponding to S′. A computer supported cooperative soft-
ware development process is used again as an example to
show that the method reduces the cost of deriving the
revised protocol specification after each change in the
service specification.

The primary goal of our approach is to save main-
tenance costs of distributed systems, and to provide a
way to specify requirement changes in a natural manner.
To this end, our re-synthesis algorithm decomposes the
changes ∆S into a sequence of atomic changes and se-
quentially applies their corresponding re-synthesis rules
to P to derive P ′. Since each re-synthesis rule is designed
to modify as small a part of P as possible, ∆P can be
small and deriving P ′ is simple enough compared with
normal protocol synthesis methods, which often consume
much computational resources to derive P ′ directly from
S′. Moreover, in contrast to Ref. [32] that considers re-
quirement changes at the protocol level (in one of the
protocol entities), our re-synthesis method is a service-
based approach.

In our previous work presented in [30], we have stated
the basic principle of our re-synthesis method where only
simple modification cases are considered. In this paper,
the method has been considerably extended so that we
can deal with more realistic service modifications that
need changing the allocation of resources, insertion or
deletion of tasks and so on.

This paper is organized as follows. Section 2 gives
examples of service specifications and protocol specifi-
cations. Section 3 describes the overview of our origi-
nal protocol synthesis method. Based on this method,
we propose a re-synthesis method in Section 4. Some
application examples are given in Section 5. Section 6

i>R

[ R<-R’+i,
  R’<-R+R’+i ]

G ? i

R R’

G G

3

fire

5 6

(a) (b)

transition t transition t

1 2

i>R

[ R<-R’+i,
  R’<-R+R’+i ]

G ? i

R R’

Fig. 1. Register values and token location before and after
firing transition in PNR

concludes this paper and includes our insights for future
research.

2 Service specifications and protocol
specifications

2.1 Petri net model with registers

We use an extended Petri net model called Petri Net with
Registers (PNR in short) [18] to describe both service
specifications and protocol specifications of distributed
systems. In this model, the service access points between
the users and the system are modeled as gates, and the
variables used inside the system, such as databases and
files, are modeled as registers. Each transition t in a
PNR has a label 〈C(t), E(t),S(t)〉, where C(t) is a pre-
condition (the firing condition of t), E(t) is an I/O event
and S(t) is a set of assignment statements (which repre-
sent parallel updates of register values).

A transition t may fire if (a) each of its input places
has a token, (b) the value of C(t) is true and (c) an
input value is given through the gate in E(t) if E(t) is
an input event. If t fires, the corresponding I/O event is
executed, and the new values of registers are calculated
and substituted in parallel as defined by S(t).

Consider, for example, transition t of Fig. 1(a) where
C(t) =“i > R”, E(t) =“G?i” and S(t) =“{R ← R′ +
i, R′ ← R + R′ + i}”. Here, i denotes an input vari-
able which holds an input value. The input value can
be referred to only in this transition t. R and R′ denote
registers which contain values, and their values may be
used and updated by all the transitions of the PNR.
This means that registers are treated like global vari-
ables. G is a gate, that is, a service access point (inter-
action point) between users and the system. Note that
“?” or “!” in E(t) indicate that E(t) is an input or output
event, respectively.

Assume that an integer of value 3 has been given
as input through gate G, and the current values of the
registers R and R′ are 1 and 2, respectively. In this case,
since the value of the pre-condition “i > R” is true, the
transition may fire. If it fires, event “G?i” is executed and
the input value 3 is assigned to the input variable i. Then
the assignments “R ← R′ + i” and “R′ ← R + R′ + i”
are executed in parallel. After the firing, the tokens are
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moved, and the values of the registers R and R′ are 5
(= 2 + 3) and 6 (= 1 + 2 + 3), respectively (Fig. 1(b)).

Formally, an I/O event E(t) is one of the following
types: “G !exp”, “G ?i”, or “τ”. “G !exp” is an out-
put event, and it means that the value of the expression
“exp” is output through the gate G (all the arguments
in “exp” must be registers). “G ?i” is an input event and
it means that the value given through G is assigned to
the input variable “i”. The event “τ” means that no ex-
ternal I/O event is associated with this transition. S(t)
is a set of assignment statements, each of which has the
form “R ← exp” where R is a register and exp is an
expression whose arguments may be the input variable
of E(t) or registers.

PNR is defined as a tuple 〈T ,P ,A,M0,G,R,I,C,E ,
S,R0〉 where 〈T, P, A, M0〉 is a Petri net, G is a set of
gates, R is a set of registers, and I is a set of input
variables. C, E and S define the labels of transitions as
explained above, and R0 defines the initial values of the
registers.

2.2 Service specifications

At an abstract level, a distributed system is regarded
as a non-distributed system which provides services as
a single “virtual” machine. The number of actual PE’s
and communication channels between them are hidden.
A specification of a distributed system at this level is
called a service specification and denoted by Sspec in
this paper. Although the actual resources of a distributed
system may be located on different physical machines,
called protocol entities, the service specification, at this
level, considers only one virtual machine.

For better readability and understanding, hereafter,
we use the simple example of Sspec shown in Fig. 2(a).
A larger practical example is given in Section 5. Sspec
in Fig. 2(a) uses two gates Gin and Gout and two regis-
ters R and R′. At the initial marking, one token is as-
signed to place P1, and therefore T1 can fire if an input
is given through Gin. When T1 fires, the system updates
the values of the registers R and R′ simultaneously using
the current values of register R′ and the input i, respec-
tively1. Then T2 fires, and the system outputs the up-
dated values of R and R′ through gate Gout and returns
to the initial marking.

2.3 Protocol specifications

A distributed system may be considered as a communi-
cation system which consists of n protocol entities PE1,
PE2, ... and PEn. We assume a duplex and reliable com-
munication channel between any pair of PE’s (PEi and
PEj). The PEi and PEj sides of the communication
channel are represented as gates gij and gji, respectively.
Moreover, we assume that all the registers and the gates
for communication with the users are allocated to certain
PE’s in the distributed system.

Two PE’s communicate with each other asyn-
chronously by exchanging messages. A message is de-
noted by “M [list of values]” where “M” is one of the
following three message types (α, β or γ) explained
later. We assume that if PEi executes an output event
“gij !M [list of values]” on a transition, this message is
sent through gate gij to the peer protocol entity PEj.

1 At the first firing of T1, the initial value of R′ is used to
update R.
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On reception, it is written into PEj’s receive buffer. If
PEj executes an input event “gji?w” with pre-condition
“ID(w) == M” on a transition, PEj removes the re-
ceived message from its buffer and the message is kept
in the input variable w. Note that the i-th value of the
list included in the received message w will be denoted
by #i(w).

In order to implement a distributed system which
consists of n PE’s, we must specify the behavior of these
PE’s. A behavior specification of PEk is called a proto-
col entity specification and denoted by Pspeck. A set of
n protocol entity specifications is called a protocol spec-
ification and denoted as Pspec1..n. We need a protocol
specification in order to implement a given service spec-
ification.

Let us assume that there are two PE’s (PE1 and
PE2) in order to implement the service specification of
Fig. 2(a). We also assume that PE1 has both user gates
Gin and Gout and register R, while PE2 has register R′.
Fig. 2(b) shows an example of Pspec1..2 which provides
the services of Fig. 2(a), based on the above allocation
of resources. Note that some additional registers, called
temporary registers, are used in this protocol specifica-
tion to temporary keep values received in messages. If
PEi receives the value of register R from some other
PE via a message, we assume a temporary register “ R”
(represented as a dotted box in the figure) to keep the
value on PEi. In Fig. 2(b), for simplicity of notations,
both g12 and g21 are denoted as g, and internal events
“τ”, pre-conditions “true” and empty sets of assignment
statements are omitted.

According to the protocol specification of Fig. 2(b)
and its corresponding timing charts in Fig. 3, PE1 first
receives an input through Gin and checks the values of
the firing condition C(T1) on t1a. Since it is always true,
PE1 executes E(T1) on t1a and keeps the received input

i in the temporary register i. Then it sends a message
“α” during transition t1b in order to ask PE2 to send
the current value of R′ which is necessary to update the
value of R. PE2 receives the message during transition
t1i and sends a message “β[R′]” during transition t1j .
PE1 receives the message during t1c and now knows the
value of R′. In parallel with the sending of the α-message,
PE1 sends the message “β[ i]” during t1d thereby send-
ing the value of the input “i” to PE2. PE2 receives the
message during t1k and now knows the value of the in-
put. After sending/receiving the β-messages, PE1 and
PE2 know that now they can execute S(T1) using the
received values. They independently execute “R ← R′”
and “R′ ← i” during the transitions t1e and t1l, re-
spectively. After the firing of t1e and t1l, the system is
in a state where the service specification should check
whether transition T2 would be executed. For that pur-
pose, PE2 sends a message “γ[R′]” in order to send the
(updated) value of R′ and let PE1 know that the exe-
cution of “R′ ← i” had been completed. When receiving
the γ-message, PE1 is ready to start the execution of
T2. After executing E(T2) on t2a, both PE1 and PE2

are back in their initial markings.
As shown in the above example, two PE’s cooperate

with each other in order to provide the same event se-
quences (including values) at the user gates Gin and Gout

as specified in Sspec. Moreover, our synthesis method de-
scribed below guarantees that the values of a register in
Sspec and Pspec1..2 are identical and the buffers of all
the communication channels are empty at correspond-
ing markings. For example, the marking of Sspec where
place P2 has a token and the marking of Pspec1..2 where
place P1 of PE1 and place “P1 + P2” of PE2 have to-
kens are such corresponding markings. This is because
our implementation never starts the execution of a tran-
sition unless the execution of all the previous transitions
have been completed, and it allows us to easily keep con-
sistency between Sspec and Pspec1..2. It also allows us
to use receive buffers of finite capacity for the commu-
nication channels, since we can determine the maximum
number of messages that may be in transmit between
any pair of protocol entities.

3 Synthesis overview

We have presented in our previous work, especially in
[29], the protocol synthesis method which is the basis
for and thus highly relevant to the re-synthesis method
presented in this paper. In order for the complete un-
derstanding of the re-synthesis method with the convic-
tion of correctness, it is important to present our syn-
thesis method designed to be suitable to the re-synthesis
method.

The synthesis method derives a protocol specification
from a given service specification and is based on a set
of synthesis rules that specify how to execute each tran-
sition T = 〈C(T ), E(T ),S(T )〉 of the service specification
by the corresponding PE’s in the protocol specification.
Based on these rules, the behavior of all PE’s and an
optimal allocation of resources (registers and user gates)
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Table 1. Notation

Notation
C(T ), E(T ), S(T ) pre-condition, event and set of as-

signment statements of T
PEstart(T ) the PE where the gate used in E(T )

is located
PEsubst(T ) the set of those PE’s that contain a

register updated by S(T )
PEstart(T • •) the set of the PE’s that start the ex-

ecution of the next transitions after
T
(i.e.

⋃
T ′∈T•• PEstart(T ′) where T •

• is the set of the next transitions
after T )

for minimum communication costs can be determined.
This leads to the specifications of all the PE’s (protocol
entity specifications) written in the same PNR model
formalism.

3.1 Synthesis rules

For executing a transition T = 〈C(T ), E(T ),S(T )〉 of the
service specification by a set of transitions of the PE’s
in the protocol specification, we use the following algo-
rithm. Fig. 4 shows how our algorithm is applied to tran-
sition T1 of Sspec of Fig. 2(a). Note that the notation
used in the following algorithm is summarized in Table
1.

• The PE that has the gate G used in E(T ) (which we
denote by PEstart(T )) decides to start the execution
of T by checking the value of the pre-condition C(T ).
If it is true, PEstart(T ) executes the event E(T ).

In Fig. 4, PEstart(T1) is PE1 since PE1 has gate
Gin. PE1 checks the value of C(T1)=“true” (al-
ways true) and then executes E(T1)=“Gin?i”.

• Then, PEstart(T ) sends synchronization messages
called α-messages to those PE’s that have the reg-
isters used to execute the assignment statements in
S(T ). On reception, those PE’s send the register val-
ues to the PE’s that execute assignment statements
whose expressions require those register values. Note
that α-messages are also sent to some other PE’s.
This is explained later.

In Fig. 4, we assume that “R← R′” and “R′ ← i”
are executed by PE1 and PE2 respectively, since
PE1 has R and PE2 has R′ (see Section 3.2 for the
discussion of this allocation problem). For this ex-
ecution, PE1 needs the value of R′ and PE2 needs
the value of i. Here, since PE1 does not have “R′”,
the value must be sent from PE2. An α-message is
sent from PEstart(T1) = PE1 to PE2 in order to
let PE2 send the value of R′. Also, since PE2 does
not know the value of i, it must be sent from PE1

to PE2. Here, since PE1 is itself PEstart(T1), it
knows the timing to send the value of “i” (just after
the execution of E(T1)). Therefore no α-message is
sent from PE1 to itself.

• On the reception of an α-message, the PE sends the
values of registers to those PE’s that need those val-
ues for the execution of part of assignment state-
ments in S(T ) (the set of these PE’s is denoted as
PEsubst(T )). These messages are called β-messages.
Using those register values, each PE in PEsubst(T )
executes the assignment statements. Note that if
a PE in PEsubst(T ) does not need any register
value for the execution of the assignment statements,
PEstart(T ) directly sends a β-message to the PE.

In the example of Fig. 4, we have PEsubst(T1) =
{PE1, PE2} since PE1 has register R and PE2 has
R′. PE1 sends a β-message to PE2 with the value
of i, which is used by PE2 to execute “R′ ← i”.
Moreover, PE2 sends a β-message to PE1 with
the value of R′, which is used by PE1 to execute
“R← R′”. Then PE1 and PE2 execute “R← R′”
and “R′ ← i”, respectively.

• After all assignment statements in S(T ) are executed,
each PE in PEsubst(T ) sends so-called γ-messages
to those PE’s that will start the execution of the
next transitions. The set of those PE’s is denoted
as PEstart(T • •). These messages confirm the com-
pletion of the assignment statements and also contain
the values of registers necessary to start the execution
of next transitions. Note that the PE’s that do not
belong to PEsubst(T ) may also need to send some
values of registers to the PE’s in PEstart(T • •).
These values are also sent as γ-messages. In this case,
α-messsages are sent to these PE’s to initiate the
sending of γ-messages.

In our example, PE2 sends a γ-message to
PEstart(T1 • •) = {PE1}. PE1 then knows the
value of R′ and the fact that the execution of S(T1)
on PE2 has been completed.

The above algorithm is presented as a set of rules
called synthesis rules (see Appendix A). The synthesis
rules are classified into action rules and message rules.
The action rules specify which PE’s should check the pre-
condition, execute the I/O event and assignment state-
ments of T . The message rules specify which PE’s should
exchange messages. The contents and types of these mes-
sages are also specified.

Consequently, three types of messages are exchanged
for the execution of a transition T :

• α-messages are sent from the PE that starts the
execution of T (i.e. PEstart(T )) to the PE’s that
send β-messages (and PE’s that send γ-messages and
are not in PEsubst(T )). Their reception leads to
the sending of β-messages and/or γ-messages. An α-
message does not contain any register value.
• β-messages are sent from PE’s that have registers to

be used to execute assignment statements of S(T ), to
those PE’s that execute these assignment statements.
The latter PE’s form the set PEsubst(T ). Note that
for the PE’s that need no register values for the exe-
cution of the assignment statements, β-messages are
sent from PEstart(T ) for synchronization. The re-
ception of β-messages leads to the execution of the
assignment statements.
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• γ-messages are sent from the PE’s in PEsubst(T )
and PE’s that have registers to be used to
check/execute C(T′)/E(T ′) to PE’s in PEstart(T ••),
where T ′ is a next transition after T . They let the
PE’s in PEstart(T • •) know the values of registers
required for C(T ′)/E(T ′) and the timing for executing
the next transition.

Our synthesis method assumes that the Petri net of
the service specification is a live and safe free-choice
net [1,2]. A free-choice net is a sub-class of Petri nets
which has simple choice structures. It is known that a
live and safe free-choice net can be decomposed into a
set of finite state machines [1,2] and this property is
used in our algorithm. In addition, we assume that for
two transitions T and T ′ of Sspec in a choice structure,
PEstart(T ) = PEstart(T ′) (i.e. the gates in E(T ) and
E(T ′) are allocated to the same PE). This guarantees
that a single PE makes the decision to select the next
transition in the choice structure. Otherwise an agree-
ment would be needed among several PE’s to make this
decision. This would be done by implementing a leader
election algorithm as the one shown in [4]. Finally, it
is assumed that for two transitions T and T ′ of Sspec
that may be executed in parallel, there is no register
that is updated by one and referred or also updated by
another. This assumption is used to prevent the incon-
sistency that may result in having multiple accesses to
the same register. This assumption may also be relaxed
by implementing a mutual exclusion algorithm (see for
instance [4]).

3.2 Optimal resource allocation for minimum
communication costs

The above synthesis rules assume that an allocation of
user gates and registers to PE’s is given. However, the
communication costs (especially the number of messages)
depend on this allocation. Therefore we may carefully

design this allocation in order to minimize the commu-
nication costs.

As a simple example, let us consider the timing charts
in Fig. 5(b). This chart is the same as in Fig. 4 and ob-
tained when R and R′ are allocated to PE1 and PE2,
respectively. If we use another allocation where both R
and R′ are allocated to PE2, we obtain a different pro-
tocol specification whose timing chart is shown in Fig.
5(c). We note that the allocation of the user gates are
usually fixed by the nature of the application, and there-
fore cannot be changed freely. These examples show that
the resource allocation affects the communication costs
of the protocol specifications and that it is not easy to
find an optimal allocation, given the complex message
exchanges between the PE’s.

We can formulate this optimal resource allocation
problem as an Integer Linear Programming (ILP) prob-
lem. For this purpose, we introduce 0-1 integer (boolean)
variables, which represent the fact that (a) a message (of
type α, β or γ) is sent from one PE to another, (b) a mes-
sage contains the value of a given register, or (c) a user
gate or a register is allocated to a given PE. For example,
a 0-1 integer variable “αx

i,j” is introduced for PEi, PEj

and transition Tx of Sspec, whose value is one iff an α-
message is sent from PEi to PEj during the execution
of transition Tx, otherwise zero. A 0-1 integer variable
“ALCi(Rw)” is introduced for register Rw and entity
PEi, whose value is one iff register Rw is allocated to
PEi, otherwise zero.

Using these variables, we define an objective function
that minimizes the communication cost (e.g. the number
of messages) and linear inequalities that represent the
synthesis rules. For example, an inequality αx

i,j ≥ βx
j,k

represents the fact that if the value of βx
j,k is one, the

value of αx
i,j must be one, which corresponds to the syn-

thesis rule “a PE that sends β-messages must receive an
α-message”. Then an optimal resource allocation is ob-
tained as the solution of the ILP problem. Note that a
general ILP problem is known to be a hard problem of
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Fig. 5. Two protocol specifications: they provide the same service as the service specification, however their resource allocations
are different

exponential complexity, and therefore a solution to our
optimization problem is not readily available for large-
scale systems in terms of the numbers of transition, re-
sources and PE’s. There are some possibilities to tackle
this complexity: (i) we may adopt partially fixed alloca-
tions to reduce the computation time. If the sizes of the
values of some registers are small enough and these reg-
isters are rarely accessed, fixing their allocation may not
cause significant performance degradation. (ii) We may
use heuristic algorithms, for instance genetic algorithms
as in [28]. This is part of our future work.

We note that different optimization criteria may be
considered by adopting corresponding objective functions.
Instead of considering the number of messages, we may
also consider the size and/or the cost of sending messages
over particular communication channels. The reader may
refer to [29] for the details of the problem formulation
and cost criteria.

3.3 Synthesis of protocol specifications

We derive a protocol specification using the following
three steps.
[Step1] Based on the synthesis rules, a set of actions
and message exchanges to be executed on each PE is
defined for each transition T of Sspec. Then these ac-
tions and message exchanges are represented, for each
PE, as a set of transitions where two transitions are con-
nected through a place if a temporal ordering between
the transitions is specified in the synthesis rules (e.g. an
α-message must be received before the corresponding β-
messages are sent). As a result, for each transition T in
Sspec, a set of sub-PNR’s SPnet1(T ), ..., SPnetn(T )

are produced for the n protocol entities. For example,
for transition T1 of Sspec in Fig.2(a), SPnet1(T1) con-
sists of t1a,...,t1f, and SPnet2(T1) consists of t1h,...,t1m

in Fig.2(b). Note that SPneti(T ) may be an empty net
in the case that PEi has no action and no message ex-
change related to the execution of T . In this case, we
suppose that the sub-PNR has only a single ε-transition
with a label {true,“τ”,{}} where τ is an internal event.
For example, SPnet2(T2) is an empty net and therefore
it only has one ε-transition.
[Step2] An intermediate protocol entity specification
of PEi (denoted as Pspeci) is derived by connecting all
sub-PNR’s SPneti(T ) in the same way as the transi-
tions T are connected in Sspec. More specifically, Pspeci
is obtained using the net structure of Sspec, by replac-
ing each T with the corresponding sub-PNR SPneti(T ).
Note that if SPneti(T ) has more than one head (or tail)
transition, an ε-transition is attached as its head (or tail)
transition so that the sub-PNR can be treated like a sin-
gle transition. Pspec2 is shown in Fig. 6(a).
[Step3] Finally, a protocol entity specification of
PEi (Pspeci) is derived by removing ε-transitions from
Pspeci. The removing technique is based on the well-
known technique to remove ε-moves in finite automata.
In order to apply this technique to our PNR model con-
taining parallel synchronization, we use the fact that a
live and safe free-choice net can be decomposed into a
set of live and safe finite state machines (FSM’s) [1,2].
This simplification algorithm proceeds as follows. First,
for each ε-transition that has u input places and v out-
put places, (LCM (u, v)/u)−1 copies of each input place
are produced and (LCM (u, v)/v)−1 copies of each out-
put place are produced, where LCM (u, v) is the least
common multiple of u and v. This replacement never
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Fig. 6. Removing ε-transitions in Pspec2

changes the behavior of the net and shows that the num-
ber of FSM’s which synchronize on the ε-transition is
LCM (u, v). Then we split these FSM’s by splitting the
ε-transition and at this moment the ε-transition is no
longer a synchronization point. Then the ε-transition
is removed using the technique to remove ε-moves in
FSM’s. For example, in the intermediate specification of
PE2 in Fig. 6(a), t1h and t2b are ε-transitions. Here, t2b

can be easily removed by merging places P1 and P2 into
a single place “P1 + P2” as shown in Fig. 6(b). Then the
input place “P1 + P2” of the ε-transition t1h is copied
as shown in Fig. 6(c). This means that two FSM’s syn-
chronize on t1h. Then t1h is split into two transitions
(Fig. 6(d)) and removed (Fig. 6(e)). Note that the spec-
ification of Fig. 2(b) includes t1h in order to make the
correspondence with the service specification more di-
rect.

4 Protocol re-synthesis

In this section, we present our new method for re-
synthesizing a protocol specification. Given a service
specification Sspec, a corresponding protocol specifica-
tion Pspec1..n and modified service specification (de-
noted by Sspec′), our method derives the corresponding
modified protocol specification (denoted by Pspec′1..n)
by making changes to Pspec1..n only as much as required
by the difference between Sspec and Sspec′. The advan-
tage of our re-synthesis method is to avoid the appli-
cations of the complete protocol synthesis algorithm for
each minor change of the requirements which frequently
occurs in software maintenance. Even in the case of a mi-
nor change on the service specification, the application
of the protocol synthesis algorithm described in Section
3 may lead to a revised protocol specification that is
different from the original protocol specification in very

many aspects and the resulting maintenance cost would
be high. With our re-synthesis method only the minimal
sequence of changes will be introduced to the protocol
specification.

Requirement changes on service specifications may
generally be complex and of wide variety. In our re-
synthesis method, we present a technique to decompose
requirement changes into sequence of atomic changes,
and present re-synthesis rules for the atomic changes.
This approach allows us to treat a variety of require-
ment changes in a simple manner. Moreover, since the
re-synthesis rules are designed to modify as small a part
of the protocol specifications as possible, changes on the
protocol specifications will remain limited.

4.1 Atomic changes and re-synthesis rules

We consider the following four types of atomic changes
(AC1+), (AC2+), (AC3+) and (AC4+), and their corre-
sponding re-synthesis rules (RS1+), (RS2+), (RS3+) and
(RS4+). As an example, we use the specifications Sspec
and Pspec1..3 shown in Fig. 7(a) as timing charts.

Note that for each atomic change (ACi+), we also
define its “inverse” atomic change (ACi−) and the cor-
responding re-synthesis rule (RSi−). We note that since
re-synthesis rule (RSi−) can be understood as the in-
verse of (RSi+), the detailed explanation is omitted in
this paper. For details, see the formal description of all
the atomic changes and re-synthesis rules given in Ap-
pendix B.

Atomic Change AC1+: A PE (say PEk) becomes a new
member of PEsubst(T ).
As an example, let us assume that S(T ) =“{R← 0}”
is modified to “{R ← 0, R ′ ← 0}” as shown in
Fig. 7(b). In this case, PE3 must execute “R′ ← 0”
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Fig. 7. Atomic changes on Sspec and re-synthesized Pspec1..3 : timing charts.

(since PE3 has R′), and thus PE3 is now a member
of PEsubst(T ). In general, PEk must know when
to execute S(T ) and then let some PE’s know when
to start the execution of the next transitions after
T . Therefore, in the corresponding re-synthesis rule
(RS1+), one additional β-message is sent to PEk by
PEstart(T ). Moreover, γ-messages are sent by PEk

to the PE’s that start the execution of the next tran-
sitions.
In the above example, a new β-message is sent to
PE3 by PE1, and after the execution of “R′ ← 0” a
new γ-message is sent to PE1 by PE3 .

Atomic Change AC2+: An additional register (say Rh)
is needed by a PE (say PEk) in order to execute
S(T ).
For example, assume that S(T ) =“{R← 0}” is mod-
ified to “{R ← R′}” as shown in Fig. 7(c). In this
case, the value of R′ is now needed by PE2 to ex-
ecute S(T ). In general, PEk must receive the value
of Rh. Therefore, in the corresponding re-synthesis
rule (RS2+), if there exists already a β-message sent
to PEk from a PE which has Rh, then the value of
Rh is included in this message. Otherwise, a new β-
message including the value of Rh will be sent to PEk

by the PE that has Rh (in this case, some existing
β-messages may be removed). Note that adding this
new β-message may need a new α-message to be sent
from PEstart(T ) to the PE that sends the new β-
message in order to let this PE know when to send
the β-message.
In the example above, a new β-message including the
value of R′ is sent from PE3 (and the existing β-
message from PE1 is removed since it has no role

now). Moreover, a new α-message sent from PE1 to
PE3 is added in order to let PE3 know when to send
the new β-message.

Atomic Change AC3+: A PE (say PEm) becomes a new
member of PEstart(T ••), the set of PE’s that start
the next transitions after T :
For example, let us assume that a new transition T ′′
with E(T ′′) = “G′!null” is added as a next transi-
tion after T where G′ is allocated to PE3 as shown
in Fig. 7(d). In this case, PE3 is now a new mem-
ber of PEstart(T • •). In general, the PE’s that ex-
ecute S(T ) must let PEm know that the execution
of S(T ) had been completed. Therefore, in the cor-
responding re-synthesis rule (RS3+), new γ-messages
sent from those PE’s to PEm are added. If S(T ) is
empty, PEstart(T ) sends a new γ-message to PEm.
In the example above, a new γ-message sent from
PE2 to PE3 is added in order to let PE3 know that
the execution of S(T ) had been completed.

Atomic Change AC4+: An additional register (say Rh)
is needed by a PE (say PEm) to execute E(T ′) and/or
to check C(T ′) where T ′ is a next transition after T .
For example, assume that E(T ′) =“G!null” is mod-
ified to “G!R′” as shown in Fig. 7(e). In this case,
the value of R′ is needed by PE1 in order to exe-
cute E(T ′). In general, the value of Rh must be sent
to PEm. Therefore, in the corresponding re-synthesis
rule (RS4+), if there exists a γ-message sent to PEm

from the PEj that has Rh, the value of Rh is in-
cluded in the message. Otherwise, a new γ-message
including the value of Rh is sent from PEj to PEm

(in this case, some existing γ-messages may be re-
moved). Note that adding this new γ-message may
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need an α-message sent from PEstart(T ) to PEj in
order to let PEj know when to send the γ-message,
in case that PEj does not execute S(T ).
In the example above, a new γ-message including
the value of R′ is sent from PE3 which has R′ (the
existing γ-message is left since it has a role to let
PE1 know that the execution of S(T ) had been com-
pleted). Moreover, a new α-message is sent from PE1

to PE3 in order to let PE3 know when to send the
new γ-message.

According to the above re-synthesis rules, we can de-
termine which messages or actions should be add/removed
or modified in the protocol specification. Adding a new
message requires two new transitions that send and re-
ceive the message, while adding an action requires a sin-
gle transition to be inserted. They are inserted so that
they satisfy the temporal relations between the existing
transitions, as specified in the synthesis rules. On the
other had, for removing an existing message sent from
PEi to PEj, the two transitions that send and receive
the message are replaced with ε-transitions and then re-
moved. Removing an action can be done in a similar
way.

4.2 Decomposing service modifications into atomic
changes

In this section, we consider general changes in the service
specification and discuss how they can be realized by a
sequence of atomic changes, as discussed above. If the
sequence of atomic changes is determined, we can then
apply the corresponding re-synthesis rules to the proto-
col specification in the same sequence and thus obtain
the modified protocol specification corresponding to the
modified service specification.

We consider three types of general changes by which
(a) the nature of a transition in a service specification is
changed (event, pre-condition or set of assignment state-
ments), (b) a new transition is added or an existing tran-
sition is deleted in the service specification, and (c) a
register allocation is changed.

(a) changing the nature of a transition: We as-
sume that the event E(T ), pre-condition C(T ) and the
assignment statements S(T ) of T are changed. This mod-
ification can be realized by the following atomic changes.

• For each transition T ′ preceding T , PEstart(T ′ •
•) may be changed if PEstart(T ) is changed from
PEm to PEm′ . (PEm may no longer be a member
of PEstart(T ′ • •) and PEm′ may be a new member
of PEstart(T ′ • •)). This is represented by atomic
changes (AC3−) for the pair of PEm and T ′, and
(AC3+) for the pair of PEm′ and T ′.

• In addition, some registers (say Rh) may no longer
be needed by PEm if PEm is no longer PEstart(T ).
Instead, some other registers (say Rh′ ) may now be
needed by PEm′ if PEm′ is now PEstart(T ). This
is represented by atomic changes (AC4−) for the pair

of Rh and T ′, and (AC4+) for the pair of Rh′ and T ′,
where T ′ is any transition preceding T .
• Since the set of registers updated in S(T ) may be

changed, some PE’s (say PEk) may no longer be
members of PEsubst(T ), and some other PE’s (say
PEk′) may be new members of PEsubst(T ). This is
represented by (AC1−) for the pair of PEk and T
and (AC1+) for the pair of PEk′ and T .
• In accordance, some registers (say Rh) are no longer

needed by some PEk to execute S(T ). Instead, some
other registers (say Rh′) are now needed by some
PEk′ to execute S(T ). This is represented by (AC2−)
for the pair of PEk and Rh, and (AC2+) for the pair
of PEk′ and Rh′ .

(b) a transition is inserted or removed If a new
transition T is inserted in Sspec, we synthesize its corre-
sponding sub-PNR’s according to the synthesis rules de-
scribed in Section 3.1. Then we insert each sub-PNR of T
in the intermediate specification of PEk (Pspeck), and
obtain Pspeck by removing ε-transitions from Pspeck.
On the other hand, if an existing transition T is removed
from Sspec, we replace each transition in sub-PNR’s of T
with ε-transitions and remove them. However, both cases
cause some additional modifications which are presented
by atomic changes as follows.

• Since the set of next transitions after T ′ may be
changed by the insertion/removal of T , where T ′ is
any transition preceding T , some PE’s (say PEm)
may no longer be members of PEstart(T ′ • •) and
some other PE’s (say PEm′) may become new mem-
bers of PEstart(T ′••). This is represented by (AC3−)
for the pair of PEm and T ′, and by (AC3+) for the
pair of PEm′ and T ′.
• In accordance, some registers (say Rh) may no longer

be used by some PE’s (say PEm) and some other reg-
isters (say Rh′) may be used in addition by some PE’s
(say PEm′) to start the execution of the next transi-
tions after T ′. This is represented by (AC4−) for the
PEm, Rh and T ′, and by (AC4+) for the PEm′ , Rh′

and T ′.

Note that the assumptions made on Sspec as pre-
sented in Section 3.1 must also hold on the modified
Sspec, i.e., (a) the Petri net of the modified Sspec must
be a live and safe free-choice net, (b) only one PE is in-
volved in the decision to select the next transition in any
choice structure, and (c) two parallel transitions of the
modified Sspec must not refer/update the value of the
same register. For (a), a set of rules is presented in [1,
2] to transform a free-choice net keeping its liveness and
safeness properties. We assume that users follow these
rules for the insertion/deletion of transitions to/from ser-
vice specifications. Checking (b) is trivial and (c) can be
checked easily using the decompositionality of live and
safe free-choice net.

(c) the register allocation is changed Our synthesis
method allows copies of a single register to be allocated
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Fig. 8. Modeling the ISPW-6 core problem

to multiple PE’s. In our synthesis method, the values of
all these copies on different PE’s are updated to keep a
consistent state. This idea is very useful in some applica-
tion areas. For example, in distributed databases, adding
copies of an existing register to some PE’s increases the
robustness to faults, balances the load, and may reduce
the communication costs.

Now we assume that an existing register Rh, already
allocated to some PE(s), is now to be allocated to an ad-
ditional PE (say PEk). This causes the following changes.

• For each transition T which has an assignment state-
ment in S(T ) that updates Rh, PEk becomes a new
member of PEsubst(T ). This is represented by (AC1+)
for the transition T .

• For the same PEk, some registers (say Rq) are needed
to execute S(T ). This is represented by (AC2+) for
the pair of Rq and T .

• The value of Rh needs no longer be transferred to
PEk since now PEk has its own copy of Rh. This is
represented by (AC2−) and (AC4−) for the transition
T where Rh is used.

On the other hand, if register Rh allocated to more than
one PE is removed from one of them, the opposite oc-
currence of the above case is applied.

We note that sometimes one may want to change the
allocation of a register Rh from one PE (say PEx) to
another PE (say PEy). This modification may be ob-
tained by first allocating Rh to PEy and then removing
Rh from PEx.

5 Experimental results

5.1 Modeling the ISPW-6 example

Protocol synthesis methods have been applied to many
applications such as communication protocols, factory
manufacturing systems [16], distributed cooperative work
management [15] and so on.

We apply our synthesis and re-synthesis methods to
the distributed development of software that involves five
engineers (project manager, quality assurance, design,
and two software engineers). Each engineer has his/her
own machine connected through a network, and partic-
ipates in the development through a gate (interfaces) of
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Table 2. Optimal allocation of resources for engineers’ machines

PEmng PEde PEse1 PEse2 PEqa
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Rtestplan

Runittest

Rtestresult
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this machine, using distributed resources placed on this
machine. This distributed development process includes
tasks for scheduling and assigning tasks, design modifi-
cation, design review, code modification, test plan mod-
ification, modification of unit test packages, unit testing,
and progress monitoring. The engineers cooperate with
each other to finish these sub-sequential tasks in a suit-
able order. The reader may refer to ISPW-6 Core Prob-
lem [33] for a complete description of this process, which
was provided as an example to help the understanding
and comparison of various approaches to process model-
ing.

Fig. 8 shows a workflow model of the above devel-
opment process using PNR, where the engineers and re-
sources needed to accomplish the tasks are indicated. We
note that for convenience, we do not show the progress
monitoring tasks in Fig. 8.

5.2 Experimental results

We regard this workflow as the service specification, and
we derived the corresponding protocol specification ac-
cording to the synthesis method described in Section 3
using the tool described in [29]. The tool lp solve[34]
was used to solve the ILP problem to determine the op-
timal allocation of resources as described in Section 3.2.
The resulting allocation is shown in Table 2. The de-
rived protocol specification includes 29 messages and is
not included here due to space limitations.

In this section, we show the effectiveness of our re-
synthesis method by comparing the time it takes to de-
rive the complete protocol specification again after each
minor modification with the time it takes to re-synthesize
a modified protocol specification.

We consider the following three cases, each corre-
sponding to one of the general changes described in Sec-
tion 4.2.

Case1: QA needs to read the present design to modify
the test plans. For this purpose, the value of Rdesign is
emitted to QA in transition T21.

Case2: MNG needs to check the test feedback (regis-
ter Rtest fb) before it is shown to DE (that is, between
the execution of T31 and T19) in order to know how DE
and QA proceed the code development process. For this
purpose, a new transition T35 is added between T31 and
T19 where the value of Rtest fb is emitted to MNG.

Case3: For resource accessibility, robustness against stor-
age faults (or failure of machine), and reduction of com-
munication costs, the source code Rcode is duplicated and
a new copy is placed on MNG’s machine.

After each case, we have used the program developed
in [29] to measure the time (in seconds) to synthesize
from scratch a new protocol specification. Moreover, we
have also measured the time to re-synthesize a modi-
fied protocol specification using a program that we have
developed for this purpose. Both programs are written
in perl, and the experiments have been performed on a
Linux PC (with an Athlon 750 MHz CPU and 256MB
memory).

Table 3(a) shows synthesis/re-synthesis times and
the number of messages (mes) in the synthesized/re-
synthesized protocol specifications for the above three
cases. The reader can clearly see that the re-synthesis
time is much less than that of a complete synthesis. This
is mainly due to the fact that by using the re-synthesis
rules, we do not have to re-derive the whole protocol
specification. Moreover, we do not re-optimize the num-
ber of messages sent between different PE’s. Neverthe-
less, the resulting protocol specifications still have opti-
mal or near-optimal solutions as shown in Table 3(a).

We also consider the following two cases, each of
which consists of more than one general change.

Case4: A second version of the source code (register
Rcode2) is placed on the machine of the software engineer
1 (SE1), and the design engineer (DE) modifies and com-
piles it as well as Rcode, in “Modify Code” (transitions
T19 and T20). This modification is treated as two general
changes of type (a) on T19 and T20. The general change
on T19 changes the set of registers used to start the ex-
ecution of the succeeding transitions of T18 and T31 and
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Table 3. Experimental results

(a) each case consists of a single general change on Sspec

Case Changes on Sspec Re-synthesis Rules Re-synth. Synth.
time mes. time mes.

1 The label of T21 is modified (a change of type (a)).
E ′(T21) =“QA!Rreq,Rdesign, Rtestplan”

(RS4+) for T1 is applied. 4s 29 520s 29

2 T35 is inserted between T31 and T19 (a change of type (b)).
E(T35) =“MNG!Rtest fb”

Sub-PNR’s for T35 are
synthesized.
(RS4−) for T31, (RS4−)
for T31, (RS3−) for T31

and (RS3+) for T31 are
applied.

24s 31 840s 31

3 Rcode is also placed on PEmng (a change of type (c)). (RS1+) and (RS2+) for
T20 are applied.

14s 31 520s 29

(b) each case consists of multiple (general) changes on Sspec

Case Changes on Sspec Re-synthesis Rules Re-synth. Synth.
time mes. time mes.

4 The labels of T19 and T20 are modified
(two changes of type (a)).
E ′(T19) =“DE!Rcode,Rcode2, Rdesign, Rtest fb”
E ′(T20) =“DE?mcd,mcd2”
S ′(T20) =“[Rcode ← mcd, Rcode2 ←mcd2,

Robject ← compiled(mcd,mcd2)]”

(RS4+) for T18, (RS4+)
for T31, (RS1+) for
T20, (RS2+) for T20

and (RS2+) for T20 are
applied.

29s 35 507s 29

5 The labels of T23, T24 and T25 are modified
(three changes of type (a)).
E ′(T23) =“QA!Rtestplan, Runittest,Runittest2,

Rdesign, Rtest fb”
E ′(T24) =“QA?utp, utp2”
S ′(T24) =“[Runittest ← utp,Runittest2 ← utp2]”
S ′(T25) =“[Rtestplan ← Run(Runittest, Runittest2, Robject)]”

(RS4+) for T22, (RS4+)
for T31, (RS4+) for T32,
(RS1+) for T24, (RS2+)
for T24 and (RS2+) for
T25 are applied.

35s 39 742s 30

the general change on T20 changes PEsubst(T20) and the
set of registers used to execute S(T20) on PEde.

Case5: An additional new unit test (register Runittest2)
is placed on the machine of the software engineer 2 (SE2),
and the QA engineer (QA) modifies it as well as Runittest,
in “Modify Test Unit Package” (T23 and T24). Moreover,
an additional test is done using the unit test in “Test
Unit” (T25).

Table 3(b) shows the experimental results for the
above two cases. The re-synthesis time is still much less
than the time for a complete synthesis. Regarding the
number of messages, since the present (thus fixed) allo-
cation is used in the re-synthesis method, some deviation
from the optimal solution is found for these cases. How-
ever, a closer look at the protocol specification obtained
by synthesis from the modified service specification in-
dicates that the structure of this protocol specification
is quite different from the original protocol specification,
which is due to several changes in the register allocation
which, in turn, is due to the re-optimization of the re-
source allocation as described in Section 3.2. We think
that this results is a much larger maintenance cost as
compared with the re-synthesized protocol specification
which has a structure similar to the original one.

Note that, as shown above, there exists a trade-
off between the optimality and maintenance cost. Re-

optimization of the resource allocation may be applied
after several applications of re-synthesis, as the need
arises depending on each application’s cost criteria [29].

6 Conclusion

We have proposed a synthesis method to derive a pro-
tocol specification of a distributed system from a given
service specification. The method involves the optimiza-
tion of register (storage) allocation that minimizes com-
munication costs of the distributed system. We have also
proposed a method to re-synthesize the modified proto-
col specification when some changes of the user require-
ments have given rise to a modified service specification.
The method consists of a set of simple rules that are ap-
plied to the original protocol specification. The rules cor-
respond to the changes in the service specification, and
are designed to modify only small parts of the protocol
specification. Therefore, the resulting modifications on
the protocol specification are small compared with the
changes that result from the application of the normal
protocol synthesis method on the modified service spec-
ification. The experimental results have shown that our
re-synthesis method could save the maintenance costs,
compared with the normal synthesis method.

We are planning to develop an integrated devel-
opment environment for distributed systems, includ-
ing tool support for specifying requirements of service
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(service specifications) through a graphical interface,
synthesizing/re-synthesizing protocol specifications, and
Java code generation from the protocol specifications.
This is part of our future work.
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Appendix A: Synthesis rules

[action rules]
(SA1) PEi that has the gate G used in E(T ) checks that

(1) the value of C(T ) is true,
(2) the execution of the previous transitions of T is

completed
(3) an input has been given through G, if E(T ) is an

input event.
Then PEi executes E(T ). This PEi is denoted
PEstart(T ).

(SA2) After (SA1), each PE (say PEk) executes the sub-
set of the assignment statements of S(T ) that up-
date the registers allocated to PEk. The set of these
PE’s is denoted by PEsubst(T ). These assignment
statements are executed when the corresponding β-
messages are received (see below).

[message rules]
(SMα) After (SA1), PEstart(T ) only sends α-messages.

The PE’s to which α-messages are sent are deter-
mined in (SMβ3) and (SMγ3).

(SMβ1) Each PEk ∈ PEsubst(T ) must receive at least
one β-message from some PE’s (each called PEj) in
order to know the timing to execute S(T ). This mes-
sage also lets PEk know the values of registers used
in S(T ) (see (SMβ2)).

(SMβ2) For each register Rh that is used to execute
S(T ) by PEk, PEk must receive its value through
a β-message if Rh is not allocated to PEk.

(SMβ3) Each PEj that sends a β-message to PEk ∈
PEsubst(T ) knows the timing to send the message
by receiving an α-message from PEstart(T ) unless
PEj is PEstart(T ).

(SMγ1) Each PEm ∈ PEstart(T ••), where T •• is the
set of the next transitions after T , must receive a γ-
message from each PEk ∈ PEsubst(T ) after (SA2).
This lets PEm know that the execution of S(T ) had
been completed on PEk. If PEsubst(T ) is empty,
PEm must receive at least one γ-message from any
PE in order to know that the execution of T had been
completed. γ-messages also let PEm know the values
of registers used in the pre-conditions and/or events
of next transitions (see (SMγ3)).

(SMγ2) For each register Rh used by PEm to start the
execution of the next transitions of T , PEm must
receive its value through a γ-message if Rh is not
allocated to PEm.

(SMγ3) Each PEl that sends a γ-message to PEm ∈
PEstart(T ••) must be in PEsubst(T ) (see (SMγ1)),
must receive an α-message from PEstart(T ) or must
be PEstart(T ), in order to know the timing to send
the γ-message to PEm.

Appendix B: Re-synthesis rules

P Esubst(T ) has been changed:
(AC1+) PEsubst(T ) = PEsubst(T ) ∪ {PEk}
(RS1+) Add a β-message sent from PEi = PEstart(T )

to PEk in order to let PEk know the timing to ex-
ecute S(T ). Also add γ-messages sent from PEk to
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∀PEm ∈ PEstart(T • •) in order to let PEm know
that the execution of S(T ) on PEk had been com-
pleted.

(AC1−) PEsubst(T ) = PEsubst(T ) \ {PEk}
(RS1−) Delete the β-messages sent to PEk since PEk

no longer executes S(T ). Also delete the γ-messages
which include no value sent from PEk. Finally, if at
least one γ-message from PEk still exists, add an α-
message from PEi to PEk.

Rsubstk(T ) has been changed: (Rsubstk(T ) is
the set of registers used to execute S(T ) on PEk)

(AC2+) Rsubstk(T ) = Rsubstk(T ) ∪ {Rh}
(RS2+) Include the value of Rh in one of the existing

β-messages sent from PEj which has Rh to PEk,
since PEk needs the value of Rh for the execution of
S(T ). If such a message does not exist, add a new
β-message including the value of Rh, sent from PEj

which has Rh to PEk. Also add an α-message from
PEi to PEj (PEi = PEstart(T ), i �= j) if PEj does
not receive an α-message.

(AC2−) Rsubstk(T ) = Rsubstk(T ) \ {Rh}
(RS2−) Exclude the value of Rh from the existing β-

messages sent to PEk, since PEk no longer needs the
value of Rh for the execution of S(T ). Then delete
each of the β-messages only if (a) it has no regis-
ter value and (b) another β-message sent to PEk

exists. Finally, delete the α-message sent to PEj

(PEi = PEstart(T )) only if there is no β-message
nor γ-message sent from PEj.

P Estart(T • •) has been changed:
(AC3+) PEstart(T • •) = PEstart(T • •) ∪ {PEm}
(RS3+) Add γ-messages from PEk to ∀PEk ∈

PEsubst(T ), since PEm needs to know that the ex-
ecution of S(T ) had been completed. If PEsubst(T )
is empty, add a γ-message sent from PEi to PEm

where PEi = PEstart(T ).
(AC3−) PEstart(T • •) = PEstart(T • •) \ {PEm}
(RS3−) Delete the existing γ-messages sent to PEm,

since PEm no longer needs to know that the exe-
cution of S(T ) had been completed.

Rstartm(T • •) has been changed: (Rstartm(T •
•) is the set of registers used by PEm to start the
execution of next transitions)

(AC4+) Rstartm(T • •) = Rstartm(T • •) ∪ {Rh}
(RS4+) Include the value of Rh in one of the existing γ-

messages sent from PEl which has Rh to PEm, since
PEm needs the value of Rh for the execution of next
transitions of T . If such a message does not exist, add
a new γ-message including the value of Rh sent from
PEl which has Rh to PEm. Also add an α-message
sent from PEi = PEstart(T ) to PEl if PEl does not
receive an α-message and PEl �∈ PEsubst(Tx).

(AC4−) Rstartm(T • •) = Rstartm(T • •) \ {Rh}
(RS4−) Exclude the value of Rh from γ-messages sent

to PEm since PEm no longer needs the value of Rh

for the execution of the next transitions of T . Then
delete each of the γ-messages sent to PEm only if (a)
it is sent from PEl �∈ PEsubst(T ), (b) a γ-message
sent to PEm exists and (c) the γ-message has no
register value. Finally, delete the α-message sent to

PEl only if there is no β-message nor γ-message sent
from PEl.


